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1. Introduction.

We consider, in this paper, a compact convex body M in R3 which is subject to wear under impact

from any random angle. An example can be a stone on a beach impacted by the sea. Our objective is to

study the deformation of the surface Σ of the body. The probability of impact at any point P on the surface

Σ is proportional to the Gauss Curvature K. Therefore the surface evolves by the flow

∂P

∂t
= KN

where N denotes the unit inward normal. The Gauss Curvature Flow was introduced by Firey [F], who

showed that it shrinks smooth, compact, strictly convex and centrally symmetric hypersurfaces in R3 to

round points. Tso [T] showed that if the initial surface Σ is smooth, compact and strictly convex, then the

Gauss Curvature Flow admits a unique solution Σ(t) which shrinks to a point at the exact time T ∗ = V/4π,

where V is the volume enclosed by the initial surface Σ. Chow [C] proved that, under certain restrictions

on the second fundamental form of the initial surface, the Gauss Curvature flow shrinks smooth compact

strictly convex hypersurfaces to round points. Andrews [A] has recently shown that the Gauss Curvature

flow shrinks compact convex hypersurfaces to round points.

In this work, we will consider the case where the initial surface has flat sides and as a consequence

the parabolic equation describing the motion of the hypersurface becomes degenerate where the curvature

becomes zero. Hence, according to Hamilton’s results in [H], the junction Γ between each flat side and the

strictly convex part of the surface, where the equation becomes degenerate, behaves like a free-boundary

propagating with finite speed. Each flat side shrinks to a point in finite time and eventually the surface

becomes strictly convex.

Daskalopoulos and Hamilton [DH] studied the solvability of the Gauss Curvature flow with flat sides

and the regularity of the interface Γ, by viewing the flow as a free-boundary problem. Let us assume, for

simplicity, that the initial surface Σ has only one flat side, namely that at time t = 0 we have

Σ = Σ1 ∪ Σ2

where Σ1 is the flat side and Σ2 is the strictly convex part of the surface. The junction between the two

sides is the curve

Γ = Σ1 ∩ Σ2.
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Since the equation is invariant under rotation, we can also assume, without loss of generality, that Σ1 lies on

the z = 0 plane and that Σ2 lies above this plane. Then, the lower part of the surface Σ can be represented

as the graph of a function

z = f(x, y)

over a compact domain Ω ⊂ R2 containing the initial flat side Σ1. The basic assumption in [DH] is that the

function f vanishes quadratically at z = 0 and that the junction curve Γ is strictly convex. Namely, setting

g =
√

2f

it is assumed in [DH] that at time t = 0 the function g satisfies

(1.1) |Dg(x, y)| ≥ λ and D2
ττg(x, y) ≥ λ ∀(x, y) ∈ Γ

for some positive number λ > 0, where D2
ττ denotes the second order tangential derivative at Γ. To explain

the condition (1.1) we look at the rotationally symmetric case z = f(r, t), where the equation which is

satisfied by f becomes

ft =
fr frr

r(1 + f2
r )3/2

.

This equation can be modeled, near r = 1, on the simpler equation ft = fr frr. It is easy to compute that

both functions z = (r + 2t − 1)2+ and z = (r − 1)3/6 (1− t)2 are solutions of the above equation. The first

one vanishes quadratically at the interface z = 0 and the free-boundary starts moving immediately at time

t > 0, while second one vanishes cubically at z = 0 and the free-boundary doesn’t move. It has been recently

shown by Chopp, Evans and Ishii [CEI] that if the surface Σ is of class C3,1, which, in particular, implies

that f vanishes cubically at the interface, then the flat region does not move at all for a positive interval

time. Condition (1.1) guarantees that the interface Γ will start to move at any point at time t = 0.

One can choose the domain Ω so that when Σ evolves by the Gauss Curvature Flow, then at least for

some short time 0 < t < T , the lower part of the surface Σ(t), can be represented as the graph of a function

z = f(x, y, t)

over Ω. This is because the results by Hamilton [H] guarantee that the lower part of the surface will

not turn immediately vertical. Since Σ(t) solves the Gauss Curvature Flow, it can be shown, by standard

computation, that the function f satisfies the equation

(1.2) ft =
fxxfyy − f2

xy

(1 + f2
x + f2

y )3/2
.

The flat side will always lie on the z = 0 plane, while the strictly convex side will always have z > 0. It was

shown in [DH] that if the initial surface satisfies (1.1) and g,Dg and dD2g ∈ Cα(Ω), with d denoting the

distance to the free-boundary, then the Gauss Curvature Flow admits a solution Σ(t), in 0 < t ≤ τ , for some

time τ > 0, the function g =
√

2f is smooth up to the interface and the junction Γ(t) between the flat and

the strictly convex side is a smooth curve, in the time interval 0 < t ≤ τ .

In this paper, we address the question of the regularity of the interface up to its focusing time, that is

up to the time T when the flat side shrinks to a point. Andrews [A] showed that if the initial surface is

2



C1,1, then the Gauss Curvature Flow admits a viscosity solution of class C1,1. We conjecture that, under

certain assumptions on the initial surface, the free-boundary Γ will be smooth for all time 0 < t < T and the

function g will be smooth up to the interface. However, we will treat here only the case where the initial

surface Σ is a surface of revolution.

Let us assume that the initial surface Σ is a surface of revolution around the z− axis and that, as before,

the flat side lies on the plane z = 0 while the strictly convex side has z > 0. Then, the lower part of the

surface can be represented as the graph of a radial function z = f(r), satisfying

(1.3) f(r) ≡ 0, for 0 ≤ r ≤ r0 and lim r → r1 − 0fr(r) = +∞

for some numbers 0 < r0 < r1, since f(r) ≡ 0 at the flat side and fr(r) = +∞ at the point where the surface

turns vertical.

Set g =
√

2f . Conditions (1.2) can now be expressed as

(1.4) gr(r0) ≥ λ > 0

since |Dg| = |gr| and gττ = gr/r. Moreover, since f satisfies (1.3), g will satisfy

(1.5) g(r) ≡ 0, for 0 ≤ r ≤ r0 and lim
r→r1−0

gr(r) = +∞.

When Σ evolves by the Gauss Curvature Flow, then at time t the lower part of the surface Σ(t) can be

represented as the graph of the radial function z = f(r, t) which evolves by the one-dimensional nonlinear

equation

(1.6) ft =
fr frr

r (1 + f2
r )3/2

and has initial data f(r, 0) = f(r). The function g =
√

2f will evolve by the equation

(1.7) gt =
g gr grr + g3

r

r (1 + g2g2
r)3/2

with initial data g(r, 0) = g(r) satisfying conditions (1.4) and (1.5). Let us define T to be the focusing time

of the flat side, manely the time

(1.8) T = max{t > 0 : g(0, t) = 0 }.

Then, at time t > T the surface Σ(t) will become strictly convex and it will start moving away from the

z = 0 plane. In other words, g > 0 for t > T , while g(r, T ) = 0 only at the point r = 0. Our first result

shows that the free-boundary z = γ(t) is smooth, for all t in the time interval 0 < t < T :

1.1. Theorem. Assume that Σ is a surface of revolution around the z−axis, with a flat side, such that at

time t = 0 the lower part of the surface is the graph of a function z = f(r, 0) ≥ 0, 0 ≤ r ≤ r1 with z = 0 at

the flat side 0 ≤ r ≤ r0. Assume that at time t = 0, g =
√

2f is smooth on [r0, r1) and satisfies conditions

(1.4) and (1.5). Then, the function g =
√

2f will be smooth up to the interface g = 0, for all time 0 < t < T ,

with T denoting the foccusing time of the flat side. In particular the interface z = γ(t) will be smooth.

Our second result describes the behavior of g at the foccusing time:
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1.2. Theorem. Under the same hypotheses as in Theorem 1.1, the solution g os (1.7) satisfies the derivative

estimates

(1.9) C1 r
2
5 ≤ gr(r, t) ≤ C2 r

1
4 , 0 ≤ t ≤ T

near the interface. This implies that at the foccusing time T of the flat side, the function g is of class C1+β,

for any β < 1
4 , and has no better regularity than of class C1+ 2

5 .

Remark. According the results in [DH], the smoothness assumption on g at the initial time t = 0 can be

replaced by the regularity assumptions that g, gr, d grr ∈ Cα([r1, r0)), for some number 0 < α < 1, where d

denotes the distance to the interface z = γ(t).

The focusing problem for the porous medium equation

ut = ∆um, m > 0

has been studied by Angenent and Aronson, [AV1], [AV2]. In Section 7, we will show how the techniques in

[AV1] can be used to obtain the exact behavior of radial solutions to the evolution Monge-Ampére equation

(1.10) ft = fxxfyy − f2
xy

at their focusing time. When f is radially symmetric, equation (1.10) takes the one dimensional form

(1.11) ft =
fr frr
r

.

Also, the function g =
√

2f satisfies the evolution equation

(1.12) gt =
g gr grr + g3

r

r
.

The result in Theorem 1.1 holds true in the case of the Monge-Ampére equation. We will show in

Section 7, using the techniques in [AG] and [GV], that equation (1.11) possesses self-similar solutions of the

form

(1.13) Φc(r, t) =
r2√
T − t

φ(
c(T − t)
rα∗

), c > 0

with α∗ a number in 3
2 < α∗ < 6

5 . As a consequence, one can use the techniques in [AA1], with minor

modifications, to show that, as t approaches the focusing time T , any solution g(r, t) of (1.11) converges,

after rescaling, to one of the self-similar solutions Φc. However, because of the derivative term in the

denominator of equation (1.7), one can show that equation (1.7) does not admit self-similar solutions of the

form (1.13). The derivative estimates (1.9) provide the best information that we have on the behavior of the

solution g of (1.7) at the focusing time t = T .

2. Basic Derivative Estimates.

In this section, we will prove certain basic estimates on the first and second derivatives of g. By a simple

rescaling argument, we can assume without loss of generality, that

(2.1) max g(·, t) ≥ 2, for 0 ≤ t ≤ T,
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where T is the focusing time of the flat side, defined by (1.8).

2.1 Lemma. Under the hypotheses of Theorem 1.1 and condition (2.1), there exits a constant C <∞ such

that

0 ≤ gr(r, t) ≤ C, on { g ≤ 1, 0 ≤ t ≤ T }.

Proof. We first notice that gr ≥ 0, because the function f = g2/2 is increasing, since f is convex and

fr = 0 at the interface. When g = 1, then gr = fr/g = fr and fr ≤ C, since f is convex and bounded.

Hence gr ≤ C, on g = 1, 0 ≤ t ≤ T . For the interior estimate, we first observe that we can approximate the

solution g by a decreasing sequence of positive smooth increasing and strictly convex solutions gε. Indeed,

let us approximate the initial data g(·, 0) by a decreasing sequence of positive smooth increasing and strictly

convex functions gε(·, 0). Since at t = 0 the function g is smooth up to the interface, and also gr ≤ C, on

g = 1, 0 ≤ t ≤ T , we can take the sequence gε(·, 0) such that

gεr(r, 0) ≤ C, on { gε(·, 0) ≤ 1 }

and

gεr ≤ C, on { gε = 1, 0 ≤ t ≤ T }

with the constant C being independent of ε. We will show, using the maximum principle, that

gεr ≤ C, on { gε ≤ 1, 0 ≤ t ≤ T }.

Set G = gεr ≥ 0. To simplify the notation lets denote gε by g and set I = 1+g2g2
r . A direct computation

shows that G satisfies the equation

Gt =
gG

r I
3
2
Grr +

gI − 3g3G2

r I
5
2

G2
r +

4G2 I − g G I − 6G4g2

r I
5
2

Gr −
3G6g +G3I

r I
5
2

.

Since,
3G6g +G3I

r I
5
2

> 0

at the maximum of G, the maximum principle implies that G cannot attain an interior maximum. Hence

gεr ≤ C, which implies the desired result.

The next Lemma provides a lower bound on the second derivative grr of g.

2.2 Lemma. Under the hypotheses of Theorem 1.1, and condition (2.1), there exits a constant C > 0 such

that

grr(r, t) ≥ −C r
8
5 , on { g ≤ 1, 0 ≤ t ≤ T }.

Proof. Let {gε} be the approximation sequence constructed in the proof of Lemma 2.1. Throughout the

proof of this Lemma, we will denote by C various constants which are independent of ε. We can choose the

sequence {gε} such that at time t = 0,

gεrr(r, 0)
r

8
5

≥ −C, on { gε(·, 0) ≤ 1 }.

This is because |grr(r, 0)| ≤ C and g(r, 0) = 0 on 0 ≤ r ≤ r0. Set

G =
gεrr

r
8
5
.
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We will show that there exists a constant C, independent of ε, such that

G ≥ −C, on { gε ≤ 1, 0 ≤ t ≤ T }.

To simplify the notation, let us denote gε by g.

We begin by showing that the above inequality holds true when g = 1. Indeed, since f = g2/2 is convex,

we have

frr = g grr + gr
2 ≥ 0

and therefore, by Lemma 2.1, we obtain

grr ≥ −
g2
r

g
≥ −C.

On the other hand, there exits a constant r0 > 0, independent of ε, such that when g(r, t) = 1, then r ≥ r0.

This is because gr ≤ C, by Lemma 2.1. Hence,

G =
grr

r
8
5
≥ −C on { g = 1, 0 ≤ t ≤ T }.

We will show, using the maximum principle, that

G ≥ −C, on { gε < 1, 0 < t ≤ T }.

Let us first show the computation in the simpler case where g satisfies the evolution Monge-Ampére equation

(1.11). In this case, a direct calculation shows that G evolves as

(2.2) Gt =
g gr Grr

r
+

15r
13
5 g G+ 25r g2

r + 6g gr
5r2

Gr +
45r gr + 14 g

5r
2
5

G2 − 6g gr
25 r3

G+
2g3
r

r
23
5
.

It is enough to prove that G doesn’t attain an interior minimum. Indeed, assuming, without loss of generality,

that at an interior minimum point G < 0, then at this point we have Gt ≤ 0, Grr ≥ 0, Gr = 0 while

45r gr + 14 g
5r

2
5

G2 > 0, −6g gr
25 r3

G > 0,
2g3
r

r
23
5
> 0

which is impossible.

Let us now assume that g is a solution of the Gauss Curvature Flow (1.7). To simplify the notation,

set I = 1 + g2g2
r . Let δ > 0 be a small number to be chosen later. When g(r, t) ≥ δ, then by Lemma 2.1,

r ≥ δ/C and hence, by the convexity of f = g2/2 we obtain

G =
grr

r
8
5
≥ − g2

r

g r
8
5
≥ −C(δ)

with C(δ) being independent ε. Hence, it is enough to restrict our attention to the interior region where

g < δ and 0 < t ≤ T . After several direct computations, one finds that G = grr/r
8
5 satisfies an equation of

the form

Gt = A(r, g, gr)Grr +B(r, g, gr, G)Gr + C1(r, g, gr)G+ C2(r, g, gr)G2 + C3(r, g, gr)G3 +D(r, g, gr)

where

A(r, g, gr) =
g5g5

r + 2g3g3
r + ggr

rI
7
2
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for all (r, t) and

C1(r, g, gr) ≤
−6ggr
25r3 I

7
2

+O(g2g3
r)

C2(r, g, gr) =
14g

5r
2
5 I

7
2

+O(rg2
rg

2)

C3(r, g, gr) =
−9r

11
5 g3gr

I
7
2

+O(r
11
5 g

5g3r )

D(r, g, gr) =
2g3
r

r
23
5 I7/2

+O(
3g7
r

r
13
5 I

7
2

)

in the region where g < δ. We can choose δ > 0, sufficiently small, such that

C1 < 0, C2 > 0, C3 > 0

in the region where { g < δ }. This is possible, since all the error terms in the approximations of C1, C2 and

C3 depend on g to a higher order than one. To control D, we first observe that we can find a number r0 > 0,

sufficiently small, such that if r < r0, then D > 0. When r ≥ r0, we can estimate

D ≥ −C0

with the constant C0 depending on r0 and the upper bound of gr. We can then conclude, that

∂

∂t

(
e(C0+1)t grr

r
8
5

)
> 0

at the minimum point of G. Hence the desired estimate follows from a direct application of the classical

maximum principle.

3. Lipschitz Continuity of the Free-Boundary.

In this section, we will show that, under the assumptions of Theorem 1.1, the interface ∂{ g(r, t) = 0 }
is a Lipschitz continuous curve z = γ(t), on 0 ≤ t < T . Our techniques are similar to the techniques in [CF].

3.1 Lemma. Under the assumptions of Theorem 1.1 and condition (2.1), the limit

gr(γ(t) + 0, t) = lim
r→γ(t)+0

gr(r, t)

exists, for 0 ≤ t < T .

Proof. By Lemma 2.2, we have grr ≥ −C r8/5 ≥ −C̃ on g ≤ 1 and hence

(g + C̃ r2)rr ≥ 0

which means that the function g+ C̃ r2 is convex, i.e., (g+ C̃ r2)r is monotone increasing and hence the limit

gr(γ(t) + 0, t) exists.

3.2 Lemma. Under the assumptions of Theorem 1.1 and condition (2.1), we have

(3.1) γ′(t+ 0) = −g
2
r(γ(t) + 0)
γ(t)

, for 0 ≤ t < T

7



Proof. Fix a number t0 ∈ [0, T ).

Case 1. gr(γ(t0) + 0) = 0: For any ε > 0, there exists a linear function h0 = h0(r) on γ(t0) ≤ r ≤ γ(t0) + ε

with slope ε, such that { r : h0(r) = 0 } = { r : g(r, t0) = 0 } and h0 ≥ g, for all r. Let h be a solution of

(1.7) with initial data h0 which is smooth up to h = 0, when t ∈ [t0, t0 + ρ], for a small ρ > 0. The existence

and regularity of h follow from the results in [DH]. Let us denote by η(t) the free-boundary of h, namely the

curve ∂{h = 0 }. Then

0 ≥ η′(t0) = −h
2
r(t0)
η(t0)

= −h
2
r(t0)
γ(t0)

≥ − ε2

γ(t0)
.

Since, h ≥ g we have 0 < η(t) ≤ γ(t) and hence

η′(t0) ≤ γ′(t0) ≤ 0.

Therefore

− ε2

γ(t0)
≤ γ′(t0) ≤ 0, ∀ε > 0

which implies (3.1), by letting ε→ 0.

Case 2. gr(γ(t0) + 0) > 0: For any number ε > 0, one can find, as in Case 1, solutions h1 and h2 of (1.7)

which are smooth up to their interface on the time interval [t0, t0 + ρ], for some ρ > 0, in addition they are

linear at t = t0, γ(t0) ≤ r ≤ γ(t0) + ε and they satisfy

(h1)r(γ(t0) + 0) = gr(γ(t0) + 0) + ε and (h2)r(γ(t0) + 0) = gr(γ(t0) + 0)− ε

and

h2 ≤ g ≤ h1.

Following a similar agrument as in Case 1, we can then show that

−g
2
r(γ(t0) + 0)
γ(t0)

− ε ≤ γ′(t0) ≤ −g
2
r(γ(t0) + 0)
γ(t0)

+ ε, ∀ε > 0

which proves (3.1).

3.3. Lemma. Under the hypotheses of Theorem 1.1 and condition (2.1), for every number δ > 0, sufficiently

small, there exists a constant Cδ > 0, such that

γ′′ + Cδ γ
′ = µ ≤ 0, 0 ≤ t ≤ T − δ

for some non-positive measure µ.

Proof. Fix a number t0 in [0, T − δ].
Case 1 : γ′(t0 + 0, t0) = 0. Then, by Lemma 3.2, gr(γ(t0) + 0, t0) = 0. Furthermore, since gr is bounded, we

have |γ′| ≤ Cδ, on [0, T − δ]. Hence,

|
∫ T−δ

0

γ′′(t) dt| ≤ Cδ

which implies that γ′′ is a measure. In addition γ′′ ≤ 0, since γ(t) is decreasing and γ′(t0 + 0) = 0.

Case 2: γ′(t0 + 0) < 0. Then, by Lemma 3.2, gr(γ(t0) + 0, t0) > 0, and hence there exists a function h0,

smooth on r > γ(t0), such that h0 ≤ g at t = t0, h2
0 convex and satisfying

(h0)r = gr and (h0)rr = ( lim
r→γ(t0)+0

grr) (1− ε)
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for some ε > 0 and small. By the results in [DH] , there exists a solution h of (1.7) which is smooth up to

h = 0 when t ∈ [t0, t0 + ρ], for a small 0 < ρ < δ/2. Let η(t) be the free-boundary of h. Then, γ(t) ≤ η(t),

since h ≤ g and γ′(t0) = η′(t0). Hence

γ(t0 + ρ)− γ(t0)− ρ γ′(t0 + 0) ≤ η(t0 + ρ)− η(t0)− ρ η′(t0 + 0)

which implies that

Φρ =
γ(t0 + ρ)− γ(t0)− ρ γ′(t0 + 0)

ρ2/2
≤ η′′(t0) + o(ρ).

To estimate η′′(t0) we differentiate the equality h(η(t), t) = 0 twice with respect to t. Since, at h = 0

ht =
hhrhrr + h3

r

r (1 + h2 h2
r)3/2

=
h3
r

r

we find that

η′(t) = −ht
hr

= −h
2
r

r
.

Also, since hrr ≥ −C, by Lemma 2.2, we have

η′′(t) = −hrrh
3
r

r2
+
h4
r

r3
≤ h2

r

r

[
C

r
+
h2
r

r2

]
.

Hence

η′′(t) ≤ −Cδ η′(t), t ∈ [t0, t0 + ρ]

where Cδ is a constant depending on δ. The last estimate holds because by the results in [DH] the function

h is smooth up to the interface z = η(t) on [t0, t0 + ρ]. Combining the above estimates we conclude that

(3.2) Φρ ≤ η′′(t0 + 0) + o(ρ) ≤ −Cδ η′(t0 + 0) + o(ρ) = Cδ − γ′(t0 + 0) + o(ρ)

On the other hand, we have Φρ ≥ −C, since grr ≥ −C by Lemma 2.2. Also, for every δ > 0,∫ T−δ

0

Φρ ≤ C

since gr is bounded, by Lemma 2.1. It follows that Φρ converges weakly to a measure µ0, as ρ→ 0. Therefore

Φρ + Cδ γ
′(t0 + 0) converges, as ρ → 0, to a measure µ and µ ≤ 0, by (3.2). This finshes the proof of the

Lemma.

3.4. Corollary. Under the same hypotheses as in Lemma 3.3, if 0 ≤ t2 ≤ t1 ≤ T − δ then

γ′(t2 − 0) eCδ t2 ≤ γ′(t1 + 0) eCδ t1

where Cδ is the constant in Lemma 3.3

Proof. From Lemma 3.3 we have

d

dt
(γ′(t) eCδt) = (γ′′(t) + Cδ γ

′(t)) eCδt ≤ 0

and therefore the result follows.

An immediate consequence of the above Corollary is:
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3.5. Theorem. Under the hypotheses of Theorem 1.1, the free-boundary z = γ(t) is Lipschitz continuous

on 0 ≤ t < T .

3.6. Corollary. Under the same hypotheses as in Lemma 3.3, for every sufficiently small number δ > 0,

one can decompose the free-boundary z = γ(t) as

γ(t) = ξ(t) + ζ(t), 0 ≤ t ≤ T − δ

where ξ is concave and ζ is of class C1,1.

Proof. For δ > 0, let µ be the non-positive measure

µ = γ′′ + Cδ γ
′.

One can decompose the function γ(t) on the time interval 0 ≤ t ≤ T − δ, as γ(t) = ξ(t) + ζ(t), where ξ and

ζ are given by

ξ(t) =
∫ t

0

∫ τ

0

dµ(s) dτ

and

ζ(t) = γ(0) + γ′(0 + 0) t− Cδ
∫ t

0

(γ(s)− γ(0)) ds.

In addition it follows from Lemma 3.3 and Theorem 3.5 that ξ is concave and ζ is C1,1.

3.7. Corollary.Under the hypotheses of Theorem 1.1, or every small number δ > 0, there exists a constant

cδ, such that

gr(γ(t) + 0) ≥ cδ > 0, 0 ≤ t ≤ T − δ.

Proof. This is an immediate consequence of Lemma 3.2 since gr(γ(t)+0) > 0 at t = 0, by assumption (1.4).

4. C1-Continuity of the Free-Boundary

In this section, we will prove that the free-boundary z = γ(t) is a C1 curve, on the interval 0 < t < T .

We will also prove that gr and g grr are continuous up to the free-boundary z = γ(t), for 0 < t < T . Our

techniques are similar to the techniques in [CF].

4.1. Lemma. Under the hypotheses of Theorem 1.1 and condition (1.2), for every number δ > 0, there

exists a constant Cδ, such that

(4.1) |gt(r, t)| ≤ Cδ and |gtt(r, t)| ≤
Cδ

d(r, γ(t))

for all (r, t) in { g ≤ 1, 0 ≤ t ≤ T − δ }.
Proof. It is enough to show these bounds for a point (r0, t0) in the set { 0 < g < 1, 0 < t ≤ T − δ } which is

sufficiently close to the free-boundary z = γ(t). Pick such a point (r0, t0) and for a number ρ in 0 < ρ < δ/2,

let us denote by Qρ the cylinder Qρ = {(r, t) : |r − r0| ≤ ρ, t0 − ρ2 ≤ t ≤ t0 }. If we define

w(r, t) = d−1 g(r0 + d r, t0 + d t), (r, t) ∈ Qρ

with d = r0 − γ(t0), then w satisfies the equation

(4.2) wt =
wwrwrr + w3

r

(r0 + dr)(1 + d−2w2w2
r)3/2

.
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Observe next that there exists a positive constant c = c(δ) > 0 such that

c ≤ w(r, t) ≤ c−1 and c ≤ wr(r, t) ≤ c−1, ∀(r, t) ∈ Qρ.

This is implied by the bounds 0 < cδ ≤ gr(r, t) ≤ C shown in Lemmas 2.1 and 3.7, since for (r, t) ∈ Qρ,
t ≤ T − δ

2 . It follows from the above bounds that the equation (4.2) is non-degenerate on Qρ and therefore by

the standard regularity theory of parabolic equations ([LSU]) the function w is smooth in Q ρ
2
. In particular

the time derivatives wt and wtt are bounded on Q ρ
2

by a constant Cδ, depending only on δ and as a result

gt and gtt satisfy the bounds (4.1) at the point (r0, t0).

4.2. Theorem. Under the hypotheses of Theorem 1.1, the free-boundary z = γ(t) is a C1 curve, for

0 < t < T .

Proof. We have already shown that the free-boundary z = γ(t) is Lipschitz, strictly decreasing and that for

all 0 < t < T both γ′(t+ 0) and γ′(t− 0) exist, when 0 < t < T . Assume that for some t0 in 0 < t0 < T we

have γ′(t0 + 0) 6= γ′(t0 − 0). It then follows from Corollary 3.6 that

a = γ′(t0 + 0) < γ′(t0 − 0) = b.

For α > 0 and β > 0, set

A = (γ(t0) + α, t0), B = (γ(t0) + α, t0 + β), C = (γ(t0) + α, t0 − β).

Since

γ(t0 + β) = γ(t0) + a β + o(β) and γ(t0 − β) = γ(t0)− b β + o(β)

and

g(B) ≈ gr(γ(t0 + β), t0 + β) (γ(t0) + α− γ(t0 + β)) + o(γ(t0) + α− γ(t0 + β))

we have

g(B) ≈
√
−γ(t0 + β) γ′(t0 + β) (α− aβ + o(β)) + o(α− aβ + o(β))

and hence

g(B) ≈
√
−(γ(t0) + a β + o(β)) (−a+ o(β)) (α− aβ + o(β)) + o(α).

Similarly

g(C) ≈
√
−(γ(t0)− b β + o(β)) (−b+ o(β)) (α+ b β + o(β)) + o(α)

and

g(A) ≈ gr(γ(t0) + 0, t0)α+ o(α) ≈
√
−γ(t0)aα+ o(α).

We conclude that

|g(B) + g(C)− 2g(A)| ≈ |(
√
−γ(t0)b−

√
−γ(t0)a)α+ o(α)| ≈

√
γ(t0) (

√
−b−

√
−a) + o(α).

On the other hand,

|g(B) + g(C)− 2g(A)| ≤ |gtt(γ(t0) + α, t0)|β2 + o(β2) ≤ C

α
β2 + o(β2)
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and hence we must have √
γ(t0) (

√
−b−

√
−a) + o(α) ≤ C

α
β2 + o(β2)

which is impossible if a > b and both α and β sufficiently small with β much smaller than α. Therefore

a = b which proves that γ is C1.

4.3. Lemma. Under the assumptions of Theorem 1.1, the function gr is continuous up to the free-boundary

z = γ(t), for 0 ≤ t < T .

Proof. Let b = gr(r0 + 0, t0) and r0 = γ(t0). We will show that there exists a function σ(ε), with σ(ε)→ 0,

as ε→ 0, such that

|gr(r, t)− b| < σ(dist((r, t), (r0, t0))), as dist((r, t), (r0, t0))→ 0.

Let us show first that gr(r, t) < b+ σ(dist((r, t), (r0, t0))). If not, then there exists δ > 0 and a sequence of

points (rn, tn)→ (r0, t0) for which gr(rn, tn) ≥ b+ δ. Since, grr ≥ −C, by Lemma 2.2, we will then have

g(r, tn) ≥ g(rn, tn) + (b+ δ)(r − rn)− C

2
(r − rn)2.

Hence, by letting n→∞, we obtain

g(r, t0) ≥ (b+ δ)(r − r0)− C

2
(r − r0)2

impossible, since gr → b, as r → r0 + 0. We will show next that gr(r, t) > b− σ(dist((r, t), (r0, t0))). Since,

γ′ is continuous, by Lemma 4.1, for any number ε > 0 there exists a number δ > 0 such that

|γ′(t)− γ′(t0)| < ε, for |t− t0| < δ.

Hence, from the relation γ′(t0) = −g2
r(γ(t0), t0)/γ(t0) we conclude that

|gr(γ(t), t)− gr(γ(t0), t0)| < σ1(ε)

with σ1(ε)→ 0, as ε→ 0. Therefore

gr(r, t) = gr(γ(t), t) +
∫ r

γ(t)

grr(η, t) dη ≥ gr(γ(t), t)− C (r − γ(t)) ≥ gr(r0, t0)− σ1(ε)− C ε = b− σ(ε)

which shows the desired estimate if σ(ε) = σ1(ε) + C ε.

4.4. Lemma. Under the assumptions of Theorem 1.1, we have

lim sup
(r,t)→(γ(t0)+0,t0)

gt(r, t) ≤
g3
r(γ(t0), t0)
γ(t0)

, for 0 < t0 < T.

Proof. Fix a time t0 in 0 < t0 < T and set b = gr(γ(t0), t0). If the conclusion of the Lemma fails, then

there exists a number ρ > 0 and a sequence of points (rn, tn)→ ((γ(t0), t0) such that

(4.3) gt(rn, t0) >
b3

rn
+ ρ.
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Set εn = rn− γ(t0), αn = tn− t0 and t̃n = t0 +α (εn +αn), where α > 0 is a small number to be determined

later. We then have

(4.4) g(rn, t̃n) = g(rn, tn) + gt(rn, tn)α(εn + αn) + gtt(rn, t0)α2(εn + αn)2 + o(α2(εn + αn)2).

To estimate g(rn, tn) from below we write

g(rn, tn) = g(γ(tn), tn) + gr(γ(tn), tn)(rn − γ(tn)) +
grr(γ(tn), tn)

2
(rn − γ(tn))2 + o((rn − γ(tn))2)

and use the estimate grr ≥ −C and the identity g(γ(tn), tn) = 0 to obtain

(4.5) g(rn, tn) ≥ gr(γ(tn), tn)(rn − γ(tn))− C

2
(rn − γ(tn))2 + o((rn − γ(tn))2).

From Lemma 4.1 we have

(4.6) gtt(rn, tn) ≥ −C
rn − γ(tn)

.

Also from Lemma 3.2 we have

rn − γ(tn) = rn − γ(t0) + γ(t0)− γ(tn)

= εn − γ′(t0)(tn − t0) + o(tn − t0) = εn +
b2

γ(t0)
αn + o(αn)(4.7)

since εn = rn − γ(t0), αn = tn − t0 and γ′(t0) = −b2/γ(t0). In addition, by Lemma 4.3 we have

(4.8) gr(γ(tn), tn) ≥ gr(γ(t0), t0)) + σ(αn + εn) = b+ σ(αn + εn)

since b = gr(γ(t0), t0). Combining the estimates (4.3)-(4.8) we conclude

g(rn, t̃n) ≥ (b+ σ(αn + εn))(rn − γ(tn)) + (
b3

rn
+ ρ)α(εn + αn)− C

2
(rn − γ(tn))2

− C

rn − γ(tn)
α2 (εn + αn)2 + o((rn − γ(tn))2 + o(α2(ε+ αn)2).(4.9)

On the other hand, using Lemma 4.2, we can estimate g(rn, t̃n) from above as

g(rn, t̃n) =
∫ rn

γ(t̃n)

gr(ξ, t̃n) dξ ≤ (b+ σ(α(εn + αn)))(rn − γ(t̃n))

where

rn − γ(t̃n) = rn − γ(t0) + γ(t0)− γ(t̃n)

= εn − γ′(t0)(t̃n − t0) + o(t̃n − t0)

= εn +
b2

γ(t0)
(αn + α(αn + εn)) + o(αn + α(αn + εn)).(4.10)

Hence

(4.11) g(rn, t̃n) ≤ (b+ σ(α(αn + εn)))
(
εn +

b2

γ(t0)
(αn + α(αn + εn)) + o(αn + α(αn + εn))

)
.
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To simplify the notation set λn = αn + εn. Combining the estimates 4.7 and 4.9 - 4.11, we obtain, after

several cancellations, that

(εn +
b2

γ(t0)
)σ(λn)− C̃λ2

n − C̃α2λn + o(λ2
n) + o(α2λ2

n) + αρλn

≤ σ(εn + αλn)
(
εn +

b2

γ(t0)
(αn + αλn) + o(αn + αλn

)
+ bλn ≈ σ(λn)λn + o(λn)

which implies, that

(αρ− C̃α2)λn + o(λn) ≤ o(λn).

This is impossible if we set α = min(1, ρ/2C̃) and let λn → 0. Therefore the assumption of the Lemma

holds.

4.5. Lemma. The function g grr is continuous up to the free-boundary z = γ(t) for 0 < t < T .

Proof. Pick a point (r0, t0) at the free-boundary r0 = γ(t0) with 0 < t0 < T . Since grr ≥ −C, and g → 0,

as (r, t)→ (r0, t0), we must have

lim inf
(r,t)→(r0,t0)

ggrr = 0.

Hence, from the equation (1.7) and the previous Lemma we deduce that

lim sup
(r,t)→(r0,t0)

gt(r, t) =
g3
r(r0, t0)
r0

which shows that gt is continuous up to the free-boundary. Since

gt =
ggrgrr + g3

r

r(1 + g2g2
r)3/2

and gr is continous up to the free-boundary and bounded from below by a positive constant, we conclude

that ggrr is continous up to the interface.

5. The C∞-Regularity of the Free-Boundary.

This section is devoted to the proof of Theorem 1.1. To simplify the notation, we will assume, without

loss of generality, that g satisfies condition (2.1). We have already shown, in the previous sections that

gr ≤ C and grr ≥ −C, on { g ≤ 1, 0 ≤ t ≤ T } and also gr ≥ cδ > 0 on { g ≤ 1, 0 ≤ t ≤ T − δ }. The proof

of Theorem 1.1 will be based on the above estimates and upon the next Lemma:

5.1. Lemma. For any small number δ > 0, there exists a constant Cδ such that

(5.1) grr ≤ Cδ, on { g ≤ 1, 0 ≤ t ≤ T − δ }.

Proof. We have shown in Lemmas 4.2 and 4.4 that the functions gr and g grr are continuous up to the

interface on the set { g ≤ 1, 0 ≤ t ≤ T − δ }. Since this set is compact they will have a modulus of

continuity. Hence, for a given ε > 0 there exist functions δ(ε) and η(ε) such that for any point (r0, t0) on the

free-boundary with 0 ≤ t0 ≤ T − δ we have

(5.2) |gr − gr(r0, t0)| < ε and |g gr| < ε

14



on Rδ,η = [r0, r0 + δ)× (t0− η, t0 + η). Set b = gr(r0, t0), t1 = t0− η and t2 = t0 + η. Then, (5.2) implies that

(5.3) (b− ε) (r − γ(t)) < g(r, t) < (b+ ε) (r − γ(t))

and

(5.4) −b
2 + 2ε
γ(t)

≈ − (b+ ε)2

γ(t)
< γ′(t) < − (b− ε)2

γ(t)
≈ −b

2 − 2ε
γ(t)

since γ′(t) = −g2
r/γ(t). Set

(5.5) γ∗(t) = γ(t1)− a (t− t1),

with a = b2+4ε
γ(t0)

, t1 = t0 − η.

To estimate grr we will construct an appropriate barrier. Let us begin by computing the evolution of

G = grr on Rδ,η. Since g ≈ bδ on Rδ,η, where b = gr(r0, t0), we find after direct calculations that G satisfies

an equation of the form

L(G) ≡ Gt −
{
A(r, g, gr)Grr +B(r, g, gr, G)Gr + C1(r, g, gr)G2 + C2(r, g, gr)G

}
= D(r, g, gr)

where, for (r, t) ∈ Rη,δ, the coefficients A,B,C1, C2 and D satisfy

A ≈ ggr
r

+
o((r − γ(t))

r
, B ≈ 5b2

r
+

3bδ
r
− 2bδ

r2
+
o(δ)
r
, C1 ≈

9b
r
− 2bδ

r
− o(δ)

r

and

C2 ≈
−42b6δ

r
− 8b2

r2
+

2b2δ
r3

+
o(δ)
r
, D ≈ 3b7

r
− 6b7δ

r2
− 2b3

r3

with b = gr(r0, t0). We can assume, by a simple scaling, that r is small compared to b and therefore deduce

that D ≤ 0, which imples that L(G) ≤ 0.

Let γ∗(t) be defined as in (5.5). To find a barrier φ of the form

φ(r, t) =
α

r − γ(t)
+

β

r − γ∗(t)

we will choose suitable constants α and β, so that

L(φ) ≥ 0.

A direct calculation shows that

L(φ) =
α

(r − γ(t))2

[
γ′(t)− A

r − γ(t)
+ (B − C1) + C2(r − γ(t))

]
+

β

(r − γ∗(t))2

[
γ∗′(t)− A

r − γ∗(t)
+ (B − C1) + C2(r − γ∗(t))

]
Using the the estimates (5.3),(5.4) and (5.5) we deduce that

L(φ) ≥ α

(r − γ(t))2

[
3b2

r
− 9bα

r
+O(δ, ε)

]
+

β

(r − γ∗(t))2

[
2b2

r
− 9b β

r
+O(δ, ε)

]
.
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Therefore, we can choose β > 0 and α0 > 0 sufficiently small, depending only on b = gr(r0, t0) and r0, such

that L(φ) ≥ 0, for all α < α0.

We next compare φ and G = grr on the parabolic boundary of Rη,δ. Since g grr ≤ ε and g ≥ (b− ε) (r−
γ(t)) in Rη,δ, we have

grr ≤
ε

(b− ε) (r − γ(t))
.

In particular

grr(γ(t) + δ, t) ≤ ε

(b− ε) δ
on [t1, t2]

if ε is sufficiently small, depending on b. On the other hand we have

φ(γ(t) + δ, t) ≥ β

γ(t) + δ − γ∗(t)

and by (5.4)

γ(t)− γ∗(t) =
b2 + 4ε
r0

(t− t1) + γ(t)− γ(t1) = [
b2 + 4ε
r0

+ γ′(t̃)] (t− t1) ≤ 0(ε) η

for some t̃ ∈ [t1, t]. Hence, we can make

φ(γ(t) + δ, t) ≥ β

2δ

by choosing ε sufficiently small and η ≤ δ, concluding that

grr(γ(t) + δ, t) ≤ ε

(b− ε) δ
≤ φ(γ(t) + δ, t) for t ∈ [t1, t2]

if ε is sufficiently small, depending on β. Finally, at t = t1 we have

φ(r, t1) =
β

r − γ(t1)
≥ ε(b− ε)(r − γ(t1)) ≥ grr(r, t1)

if ε is sufficiently small, concluding that G ≤ Φ at the parabolic boundary of Rη,δ. The maximum principle

then implies that

G = grr ≤
α

r − γ(t)
+

β

r − γ∗(t)
, on Rη,δ

for all α ≤ α0. Taking the limit α→ 0, we finally conclude that

grr ≤
β

r − γ∗(t)

in Rη,δ, which immediately implies that

grr(r0, t0) ≤ β

r0 − γ∗(t0)
=

β

r0 − γ(t1) + b η
≤ β

bη

with the constants η and β depending only on b = gr(r0, t0). Since, we have already shown that

0 < cδ ≤ gr(γ(t), t) ≤ c−1
δ , on 0 ≤ t ≤ T − δ

the desired estimate grr ≤ Cδ follows.

We are now in position to finish the proof Theorem 1.1.
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Proof of Theorem. Fix a number δ > 0. Since grr is bounded on 0 ≤ t ≤ T − δ, it follows that the

functions g, gr, and g grr are of class Cα up to the free-boundary z = γ(t), for some 0 < α < 1 and for

0 ≤ t ≤ T − δ. Since gr ≥ cδ > 0 on 0 ≤ t ≤ T − δ, the distance to the free-boundary d = d(r, t) is

proportional to the function g(r, t), and hence d grr is also of class Cα. Moreover, the time derivative gt is

also of class Cα, since

gt =
g grgrr + g3

r

r (1 + g2g2
r)3/2

.

It follows by the regularity result in [DH], that g is of class C∞ up to the free-boundary for all 0 < t ≤
T − δ. Since δ is arbitrary the result follows.

6. The behavior of Solutions near the Focusing Time.

This section is devoted to the proof of Theorem 1.2, which determines the behavior of the solution g

of (1.7) at the focusing time T of the flat side. One can observe that all the results which are shown in

the previous sections hold true, not only for solutions of equation (1.7) but also for solutions of the Monge

Ampére equation (1.12). In this section, we will show that Theorem 1.2 is satisfies for solutions to both

equations (1.7) and (1.12). To simplify the notation in the proofs, we will assume, without loss of generality,

that condition (2.1) holds.

The first Lemma provides the upper bound on the derivative of g at the focusing time.

6.1. Lemma. Under the assumptions of Theorem 1.2 and (2.1), the function g satisfies the derivative

estimate

gr ≤ C r
1
4 on { g ≤ 1, 0 ≤ t ≤ T }.

Proof. As in the proof Lemma 2.1, we first approximate g by a decreasing sequence gε of positive smooth

increasing strictly convex solutions. Set

G =
gεr

ra + ε

where a > 0 is to be determined. We will find an upper bound of G which is independent of ε. To simplify

the notation, let us denote gε by g. We will show, using the maximum principle that G doesn’t attain an

interior maximum. Actually, using the result of Lemma 1.2, it is enough to show that G doesn’t attain a

maximum at a point (r, t) where 0 < t < T and r ≤ ρ, with ρ sufficiently close to r = 0.

We will demonstrate the proof in the case that g is a solution to the evolution Monge-Ampére equation

(1.12). The computations for the Gauss Curvature Flow are more involved but very similar. When g evolves

by (1.12) one can see, by direct calculations, that at a positive maximum point (r, t) of G with r ≤ ρ one

has

0 ≤ Gt(r, t) ≤
(4a− 1)r3a + (8aε− 3ε)r2a + (4a− 3)ε2ra − ε3

r2(ra + ε)
G3 +

(2a2 − 2a)r2a + ε(a2 − 2a)ra

r3(ra + ε)
g G2.

Setting a = 1
4 we obtain

0 ≤ Gt(r, t) ≤
−ε r2a − 2ε2ra − ε3

r2(ra + ε)
G3 − 3(r2a + εra)

8r3(ra + ε)
g G2 < 0

since G > 0 at the maximum point (r, t). This is impossible, proving that G cannot have a maximum point

at (r, t).
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We will prove next the lower bound on the derivative of g, at the focusing time.

6.2. Lemma. Under the assumptions of Theorem 1.2 and (2.1), there exists a constant c > 0 such that

gr ≥ c r
2
5 for r ≥ γ(t)

on the set {g ≤ 1, 0 ≤ t ≤ T }.
Proof. For numbers a > 0 and A > 0, to be determined later, set

G =
gr
ra

and G̃ = GeAt.

It is then easy to see that

G̃ ≥ c > 0, on {g = 1, 0 ≤ t ≤ T }

since the bound in Lemma 2.1, implies that if g(r, t) = 1 then r ≥ r0 > 0. Therefore, to prove the lower

bound on G, it is enough to show that G̃ doesn’t attain its minimum at an interior point (r, t) where g < 1.

To demonstrate the ideas, we will present first the proof in the simpler case where g satisfies the Monge-

Ampére equation (1.12). Assume first that G̃ attains its minimum at an interior point (r, t), where r > γ(t).

Then, at this point we have

Gr = 0, Grr ≥ 0, and Gt +AG ≤ 0.

Let us also assume, without loss of generality that at (r, t) we have G < 1. Computing the evolution of G

we obtain, after several calculations, that at the point (r, t)

Gt ≥
(4a− 1) r2a

r2
G3 +

2(a2 − a) rag
r3

G2 =
raG2

r3
[
(4a− 1)rgr + 2(a2 − a) g

]
.

By the Mean Value Theorem, g(r, t) = (r− γ(t)) gr(r∗, t) ≤ r gr(r∗, t), for some point r∗ ∈ [γ(t), r]. Also, by

Lemma 2.2,

gr(r, t)− gr(r∗, t) = grr(r∗∗, t)(r − r∗) ≥ −C r
8
5 .

Therefore, at the point (r, t), we have

Gt ≥
raG2

r3
[
(2a2 + 2a− 1)rgr + 2r(a2 − a) (gr(r, t)− gr(r∗, t)

]
≥ raG2

r2

[
(2a2 + 2a− 1)raG− C(a2 − a) r

8
5

]
.

Choosing a = 2
5 , so that 2a2 + 2a− 1 ≥ 0 and 8

5 + a = 2 we obtain

Gt ≥ −C
r

8
5+a

r2
(a− a2)G2 ≥ −C̃ G2.

This contradicts the condition Gt +AG ≤ 0 if A = C̃, since G < 1 at (r, t).

Assume next that the minimum of G̃ = eAtG is attained at a point (γ(t), t) of the free-boundary. At

the free-boundary where g = 0, G̃ evolves by

dG̃(γ(t), t)
dt

= eAt [Gt + gr γ
′(t)] +AeAtG =

4r2aG2(eAtG)r
r

+
r2a(4a− 1)− r3a+1

r2
eAtG3 +AeAtG.
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Since G̃r = (eAtG)r ≥ 0 at a minimum point (γ(t), t) of G̃, we conclude that at such a point

dG̃(γ(t), t)
dt

≥ r2a(4a− 1)− r3a+1

r2
eAtG3 +AeAtG.

Therefore setting a = 2/5 we obtain

dG̃(γ(t), t)
dt

≥ 3
5
r−

6
5G3eAt + [A− r 1

5G2]GeAt.

We can assume, without loss of generality that G̃ < 1 at the minimum point (γ(t), t). Hence, from the above

estimate we conclude that at the point (γ(t), t), we must have

dG̃(γ(t), t)
dt

>
3
5
r−

6
5G3eAt + [A− r 1

5 e−2At]GeAt > 0

if A is chosen sufficiently large. This leads to a contradiction, since at a minimum point of G̃ one has dG̃
dt ≤ 0.

In the case of the Gauss Curvature Flow the computations are more involved but very similar. Set

I = 1 + g2g2
r . If

G̃ =
gr

r
2
5
eAt

assumes an interior minimum at (r, t) one can compute that at this point

Gt ≥ −CG4 +
3G3

5r
6
5 I

3
2
− 12gG2

25r
13
5 I

3
2

= −CG4 +
G2

r
13
5 I

3
2

[
3rgr

5
− 12g

25
]

≥ −CG4 +
G2

r
13
5 I

3
2

[
3rgr

5
− 12gr(r∗)

25
] ≥ −CG4 +

3G2

5r
13
5 I

3
2

[gr − gr(r∗)]

for some point r∗ in [γ(t), r] and use the inequality grr ≥ −Cr
8
5 , proven in Lemma 2.2, to deduce that

Gt ≥ −CG4 − C r
13
5

r
13
5 I

3
2
G2 ≥ −C G

if G̃ ≤ 1 at the minimum point (r, t). We can then conclude, as above, that G̃ cannot attain an interior

minimum if A is chosen sufficiently large. To show that G̃ cannot attain its minimum at the free-boundary,

one uses the same argument as in the case of the Monge-Ampére equation, shown above. This concludes the

proof of the Lemma.

Proof of Theorem 1.2. Theorem 1.2 is an immediate consequence of Lemmas 6.1 and 6.2.

7. Self-Similar behavior of Solutions to the parabolic Monge-Ampére Equation.

In this last section we will sketch the proof of the self-similar behavior of solutions to the parabolic

Monge-Ampére equation (1.12) at their focusing time. We will omit most of the details of the proofs, since

they are very similar to the proofs of the analogous results in [AV] and [AA1].

We begin by showing that equation (1.12) admits self-similar solutions. To simplify the notation, let us

translate the time variable so that the focusing time of the solution g of (1.12) is T = 0. Using the scaling

of the equation we easily deduce that we should look for a self-similar solution Φ of the form

(7.1) Φ(r, t) =
r2√
−t

φ(
t

tα
) t ≤ 0.
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Since Φ must satisfy the equation (1.12), setting s = t
rα and −ξ = ln(−s), we find that φ = φ(ξ) must satisfy

the equation

(7.2) (α3φφ′ + 2α2φ2)φ′′(ξ) + 3α2φφ′
2(ξ) + α3φ′

3(ξ) + 20αφ2φ′(ξ)− 12φ3 − φ′ − 1
2
φ = 0

where

α3φφ′ + 2α2φ2 ≥ 0

since ggr ≥ 0. Set ψ(ξ) = φ(ξ) and θ(ξ) = φ′(ξ), so that the above equation becomes equivalent to the

system

(7.3)
{
ψ′ = θ

α2(αθψ + 2ψ2) θ′ = θ + 1
2ψ − 12ψ3 − 20αψ2θ − 2α2ψθ2 − α3θ3.

Introducing the new variable τ so that

dτ

dθ
=

1
αθψ + 2ψ2

≥ 0

and defining ρ(τ) = ψ(ξ(τ)) and σ(τ) = θ(ξ(τ)), we conclude that the system (7.3) is equivalent to

(7.4)
{
ρ′ = σ (αρσ + 2ρ2)
α2 σ′ = σ + 1

2ρ− 12ρ3 − 20αρ2σ − 3α2ρσ2 − α3σ3.

Finally, setting {
τ = αω

σ(τ) = 1
α ζ(ω), ρ(τ) = η(ω)

the system (7.4) becomes equivalent to

(7.5)
{
η′ = ζ (ηζ + 2η2) = ηζ (ζ + 2η)
ξ′ = 1

α ζ + 1
2η − 12η3 − 20η2ζ − 9ηζ2 − ζ3.

The last system of equations is very similar to the one studied in [GV] with a little different constant. Hence,

we can follow the proofs of the results in [GV] and [AA1] to establish the following result.

7.1. Theorem. There exists a function φ, continuous on (−∞, 0] and constants E > 0 and α∗ > 0 such

that

Φ(r, t) =
r2√
−t

φ(
t

rα∗
), t ≤ 0

is a solution of (1.12) and {
φ(s) > 0 for − E < s < 0
φ(s) = 0 for s ≥ −E

It follows the free-boundary of Φ is given by

r =
(
−t
E

) 1
α∗

.

For a constant c > 0 set

Φc(r, t) =
r2√
−t

φ(
ct

rα∗
), t ≤ 0.

Following the arguments of the proof of Theorem 1.1 in [AA1] one can prove the following result:
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7.1. Theorem. Let g be a solution of (1.12) which focuses at time t = 0. Assume that g(r, t0) has finite

intersection points with Φc(r, t), for some t0 < 0 and c > 0. Then, there exists a number c∗ > 0 such that

lim
λ→0

1

λ
4−α∗
2α∗

g(
1
λα∗

r, λt) = hc∗(r, t).

In other words, for each η < 0, we have

lim
r→0

g(r, r ηα
∗
)

r
4−α∗

2

=
φ(c∗η)√
−η

.

An immediate consequence of this Theorem is the next Corollary.

7.2. Corollary. Under the hypotheses of Theorem 7.1, we have

lim
r→0

g(r, 0)

r
4−α∗

2

= c∗.

Using Theorem 1.2 we can estimate the number α∗.

7.3. Corrolary. The number α∗ in Theorem 7.2 can be estimated as

3
2
≤ α∗ ≤ 6

5
.

Proof. Since C1 r
2
5 ≤ gr ≤ C2 r

1
4 , by Theorem 1.2, we must have

1 +
2
5
≤ 4− α∗

2
≤ 1 +

1
4

which immediately implies the desired bound.
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